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Abstract—Adapting deep neural networks to the changing
environments is critical in practical utility, especially for online
web applications, where the data distribution changes gradually
due to the evolving environments. For instance, the web photo
of the cellphone changes gradually over the years due to the
appearance change. In this paper, we deal with such a problem
via active gradual domain adaptation, where the learner contin-
ually and actively selects the most informative labels from the
target to enhance the label efficiency and utilizes both labeled
and unlabeled samples to improve the model adaptation under
gradual domain drift. We propose the active gradual self-training
(AGST) algorithm with the novel designs of active pseudolabeling
and gradual semi-supervised domain adaptation. Specifically,
AGST pseudolabels the samples with high confidence, and selects
the most informative labels from the unconfident samples based
on both uncertainty and diversity, and then gradually self-trains
itself by confident pseudolabels and active queried informative
labels. To study the gradual domain shift problem in the web
data and verify the proposed AGST algorithm, we create a
new dataset – Evolving-Image-Search (EVIS), which is collected
from the web search engine and covers the time range of 12
years. Since the appearance of the products evolves over these
years, such dataset naturally contains gradual domain drift.
We extensively evaluate AGST on the synthetic dataset, real-
world dataset, and EVIS dataset. AGST achieves up to 62%
accuracy improvement (absolute value) against unsupervised
gradual self-training with only 5% additional labels, and 19%
accuracy improvement against directly applying CLUE, which
demonstrates the effectiveness of the designs of active pseudolabel
and gradual semi-supervised domain adaptation.

Index Terms—Gradual Domain Drift, Gradual Domain Adap-
tation, Active Domain Adaptation, Web Noise Data.

I. INTRODUCTION

DEEP neural network works remarkably well in many
real-world scenarios when the models are trained with

large amounts of labeled data and tested on the same data
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distribution [11], [33], [2], [15]. However, when the appli-
cation environment keeps changing, the trained model may
fail to adapt to the gradually changing domains, leading to
a serve performance decay [16]. This may be solved by
collecting enough labeled training data to cover all the possible
distributions that occur at test time. However, it often brings
prohibitively high labeling costs. This especially happens in
web application scenarios. For instance, the appearance of
the communication devices in the web images vary over
time, as shown in Figure 2. This kind of variation could
lead to the performance drop of the deep learning models
initially trained based on previous data. This effect is shown
in Figure 3. In the meanwhile, because of the scale of web
data, annotating all the samples is expensive and impractical.
Consequently, it calls for machine learning systems that can
adapt to the changing environment with only limited labels,
which challenges both the adaptation ability and annotation
efficiency under environmental change.

Even though there are active researches on domain adap-
tation, conventional domain adaptation methods are severely
challenged by the gradual domain drift, i.e., gradually chang-
ing data distribution caused by the evolution of environments.
Unsupervised domain adaptation (UDA) [7], [30], [35] aims
to improve the generalization of a pre-trained model trained
by a labeled source domain to a new and fixed unlabeled
target domain (Figure 1 left bottom). However, UDA is
insufficient to deal with gradual domain drift, as shown in
previous work [16], where they further consider unsupervised
gradual domain adaptation (UGDA) to address the problem of
gradual domain drift (Figure 1 middle), however, suffer from
exponential error growth due to the gradual domain changes.
In addition, Saito et al. [20] have shown that UDA may be
insufficient to bridge a severe domain drift entirely. Since the
accumulated domain drift may be large if the time step is long,
it is impossible to maintain a good performance in such severe
domain drift without any additional labels. Therefore, querying
additional labels is necessary for successfully adapting to a
changing domain.

With the help of active learning (AL) [6], [36], [1]
that improves the label efficiency, active domain adapta-
tion (ADA) [18], [23] approaches can further enhance the
adaptation to a fixed domain by active querying additional
informative labels (Figure 1 right bottom). However, since
ADA can only adapt from the source domain to a fixed target
domain, directly applying ADA to the gradual domain drift
problem often leads to bad performances. In addition, it also
is difficult to embed ADA in gradual domain adaptation, since
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Fig. 1: Comparison with related works. our proposed AGDA utilize both active queries and intermediate data to enhance the
performance under gradual domain drift. In contrast, UGDA only uses intermediate data, ADA only uses active queries, and
UDA does not consider both of them.

ADA needs to do a semi-supervised domain adaptation after
having the labels, and the semi-supervised loss depends on the
consistency between the source and target domain, which is
impossible since if the time step is long, the accumulated bias
caused by gradual domain drift would be too large.

To further improve the adaptation efficiency of gradual
domain adaptation, it is natural to study the problem of
active gradual domain adaptation, where the model adapts to
a gradually changing domain with only limited labels. To the
best of our knowledge, no previous work has considered active
domain adaptation under gradual domain drift. We define this
as the Active Gradual Domain Adaptation problem (Figure 1
upper) Such problem challenges the designs of both the active
query strategy, and gradual semi-supervised domain with small
batches of data. To solve this, in this paper, we propose the
Active Gradual Self-Training (AGST) algorithm. In each time
t, AGST first pseudolabels the instances with high confidence.
Then, we design a querying strategy to actively select the
informative labels from the unconfident instances based on
both uncertainty and diversity, where we define the uncertainty
by entropy and confidence, and achieve the diversity by
cluster-based active strategy [36]. After that, AGST runs semi-
supervised iterations by confident pseudolabels, active queries,
and data features. To eschew the chaos of noise under small
batches, we add normalization to constrain the adaptation from
the last model.

In our experiment, we first introduce the construction of our
new web dataset – Evolving-Image-Search (EVIS) dataset, and
show that natural gradual domain drift and environment noise
exist. We then verify the proposed algorithm and baselines on
three datasets: Rotating MNIST is a synthetic dataset without
environment noise; Portraits is a real-world data labeled by
human without environment noise; EVIS is a real-world data
automatically collected from the web with environmental
noise. The experiment results show that AGST significantly
outperforms UGDA, where AGST gains over 60% accuracy
increase than UGDA with only 5% active labels in Rotating
MNIST, over 15% in portraits with only 2% labels in Portraits,
and over 40% with 10% labels in EVIS. In contrast, UGDA

only achieves a very marginal accuracy improvement than
the source model, and even much worse in the EVIS dataset
with environmental noise. As compared with direct applying
active DA – CLUE [18], AGST achieves 19%, 15%, and
7% improvement in these three datasets, respectively. The
ablation study verifies that our designs of active pseudolabel
and gradual semi-supervised domain adaptation are effective.
Our contributions. Our contributions are summarized as
following:
• We collect a new Evolving-Image-Search (EVIS) dataset.

EVIS consists of real-world web images that appeared in
Google image search results, with individually recorded
searching keyword labels and uploading times. The col-
lection process of EVIS is purely done automatically
without artificial selection and annotation. We further
show that this dataset has a natural gradual domain drift
caused by the evolution of web images with time, and
noise caused by the search randomness, which makes the
trained model fail gradually.

• We formulate an active gradual domain adaptation prob-
lem, where the models need to adapt to an evolving
domain with only limited labels.

• To address the challenge of limited labels, we propose an
active pseudolabel strategy. It pseudolabels the confident
instances and make active query from the unconfident
ones by both diversity and uncertainty, where the uncer-
tainty is defined by combining the confidence and the
entropy.

• To deal with small batch and noise data, we design
a gradual semi-supervised domain adaptation iteration,
which regularizes the adaptation step for not forgetting
the last model.

• We conduct experiments on a synthetic dataset, a real-
world dataset, and a web dataset. The experiment results
show the advantage of both the designs of active pseu-
dolabeling and gradual semi-supervised domain adapta-
tion.

The rest of the paper is organized as follows. We survey
related work in Section II. We provide the system model
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Fig. 2: Illustration of the prototype change for the electronic
phone. We collect the figures from the google search engine
from the year of 2009 to 2020. As shown, the prototype is
different in each year, which makes the previous classification
model fail.
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Fig. 3: Illustration of performance decay of deep learning
model caused by the web images’ evolution. Here we train
a ResNet18 model on an initial source dataset to classify web
images. The source dataset consists of Google searching result
images for different electronic devices and vehicles categories
from 2009 to 2011. We then test the model for the same
classification task on searching result images from 2012 to
2020. This figure shows the accuracy curve w.o.t the time. The
figure shows that the source model suffers from a continuous
performance drop with time. It shows that the web data is
undergoing gradual domain drift.

and the proposed method in Section III. We provide the
construction of the new web dataset and evaluate our design
in Section V. We conclude the paper in Section VI.

II. RELATED WORKS

The topic of this paper sits well in the following four bodies
of literature: unsupervised domain adaptation, gradual domain
adaptation, active domain adaptation, and domain adaptation
dataset. Our results contribute to all these areas and hopefully
will inspire more interplay among the related communities.
Unsupervised domain adaptation (UDA). Unsupervised do-
main adaptation is a typical method to enhance the gen-
erality of the model trained with source data, by utilizing
the unlabeled samples from the target domain [35]. The key

challenge for domain adaptation is that the source and target
domains may be very different[22], [34], which is typical in
the modern high-dimensional regime. Importance weighting-
based methods [21], [14], [24] assume the domains are close,
with theoretical guarantees depending on the expected density
ratios between the source and target. However, in practice,
even if the domains are similar, the density ratio often scales
exponentially in the dimension. These methods perform poorly
in high-dimensional scenarios. These methods assume that
P (Y |X) is the same for the source and target, while we study
the case with a continually changing domain. Recent proposed
methods aim to learn domain invariant representations [27],
[9], [26]. However, these methods require several additional
heuristics [13], and are shown to fail to deal with gradual
domain drift [16]
Gradual Domain Adaptation (Gradual DA). Essentially
gradual DA assumes the domain shifts gradually over time
and tries to continually adapt the source domain to multiple
target domains at each time. Different methods are proposed to
address this challenge, such as adversarial loss [3], generative
adversarial networks [31], linear transform [4], optimal trans-
port [17], and indexed domain adaptation [29]. However, these
approaches need to learn from the whole data from beginning
to end. Because of the scale of real-world application, it is
impractical for a machine learning system to remember all
the data in history. For instance, the web application receives
a large scale of data in each data, it is impossible to collect
and train all the data together. Kumar et al. [16] provides
a theoretical guarantee for unsupervised gradual self-training
under gradual domain drift, which uses the last model to
pseudolabel the current instances and then self adapts itself
by these pseudolables. However, unsupervised DA (UDA) may
suffer from severe performance drops in gradually changing
domain without additional labels [20], since the accumulated
drift could be too large to efficiently apply UDA. In our
experiment, we show that gradual unsupervised self-training
performs nearly the same as the initial model when the time
step is long (c.f. Section V).
Active Domain Adaptation (Active DA). Active DA is first
proposed by Rai et al. [19] with application to sentiment
classification from text data, where they embed an online
uncertainty based sample strategy in domain adaptation. Chat-
topadhyay et al. [5] propose a method that performs transfer
and active learning simultaneously by solving a single convex
optimization problem. Recently, active adversarial domain
adaptation (AADA) [23] is proposed to solve the active DA
problem in the context of deep learning, where AADA selects
samples based on the uncertainty measured by entropy and
targetness measured by the domain discriminator. Prabhu et
al. [18] propose ADA-CLUE that queries labels based on
uncertainty and diversity, then adopts a semi-supervised DA
to transfer the domain knowledge to the target. However,
previous works depend on the consistency between the source
domain and target domain, which is impossible under gradual
domain drift, leading to the ineffectiveness of directly applying
to continual adaptation.
Domain Adaptation Dataset. There are several commonly
used real-world datasets in the recent representative works
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of DA [26] [25] [32]. The Office-Home data [28] set is the
most commonly used, which consists of images of objects
in different office/home scenarios. Some works also run DA
experiments on datasets transformed from common datasets
like ImageNet and Cifar. However, non of the above datasets
has a gradual changing property. In terms of research works
about gradual DA, synthetic datasets with gradual domain drift
like rotating-Mnist [29] and rotating-Gaussian [16] are often
adopted. Few real-world datasets are currently being com-
monly used, one of which being representative is Portraits [10].
There is currently no web-image-based dataset designed for
gradual DA.

To sum up, no previous work have considered adopting
active learning that queries limited labels to further enhance
the effectiveness, this work takes the first step. That is re-
quiring far fewer labels than full supervision, e.g., 2% and
5% in our experiments (Section V), while maintaining a
good performance. In this paper, we address this problem by
designing a novel algorithm AGST with active pseudolabeling
and gradual semi-supervised learning. Compared to gradual
DA, we allow the adaptation model to queried additional labels
to eschew the ineffectiveness of UDA, and propose an efficient
sample strategy to enhance the label efficiency. Compared
to active DA, we study the problem under gradual domain
drift, and design a confidence-based pseudolabeling and a
gradual semi-supervised DA suitable for such scenarios. Also,
by making the EVIS dataset, we become the first to propose
a web image-based dataset for gradual domain adaptation.

III. METHOD

We address the problem of active gradual domain adaptation
(AGDA), where the goal is to continually adapt a model
trained on a source domain to a gradually changing target
domain, with the option to query a budget of labels from the
target domain. In this section, we present a novel algorithm –
Active Gradual Self-Training (AGST Algorithm 1) for AGDA,
as shown in Figure 4, which performs consistently well under
gradual domain drift. We will first introduce the system model
and present the two novel designs: active pseudolabel and
gradual semi-supervised domain adaptation.

A. System Model
In AGDA, the learning algorithm has access to a set of

labeled data from the source domain (XS , YS), and unlabeled
data from the target domain Xt

T at time t, where the target
domain evolves with the time. In each time t, the leaner is
allowed to query labels from the target with a budget B, which
is small related to the amount of unlabeled data. The active
queries are denoted as (Xt

LT , Y
t
LT ) ⊂ (Xt

T , Y
t
T ), where Y tT is

the target labels in hindsight. In time t, the task is to gradually
adapt the previous neural network ft−1 ◦ φt−1 : X → Y to
the changing target domain, and get a better model ft ◦ φt
with a good performance, where φt : X → Z is the feature
extractor and ft : Z → Y is the classifier. Denote the instances
xS ∈ XS , xT ∈ Xt

T , and labels yS ∈ YS , yT ∈ Y tT with
categorical variables y ∈ {1, 2, . . . , C}. Denote the whole time
horizon is T. Since the target and intermediate domains are
the training data, we actually know the time horizon.

Algorithm 1 Active Gradual Self-Training (AGST)

Input: Confidence threshold value α, pseudolabeled data
loss weight λPT , active queried data loss weight λLT ,
regularization weight λR, and entropy weight λH.
Initial: Learn from source data XS , YS , and get initial
feature extractor φ0 and classifier f0.
for t = 1, . . . , T do

Received unlabeled data Xt
T .

Active Pseudolabel:
Compute the confidence for each instance
ρ(x; f, φ)(Eq.1) in Xt

T .
Give the pseudolabels for instanstance with high confi-
dence ρ(x) > α by the initial model, and get pseudola-
beled data Xt

PT , Y
t
PT .

Active Query:
Compute the uncertainty S(x; f, φ) (Eq. 2) in Xt

T \Xt
PT .

Run weighted KMeans++ for Xt
T \Xt

PT with weight of
S(x; f, φ), and get the centroids.
Query labels for the nearest neighbors to centroids, and
get active queried data Xt

LT , Y
t
LT .

Gradual Semi-supervised Domain Adaptation:
Joint update the feature extractor φ and classifier f by

ft = argmin
f
Lt(f, φ) +Rft (f)− λH

∑
x∈Xt

T

H(x; f, φ),

φt = argmin
φ
Lt(f, φ) +Rφt (φ) + λH

∑
x∈Xt

T

H(x; f, φ).

Return: Prediction ft(φt(Xt
T )).

end for

TABLE I: Notations

t time slot
T time horizon
xS ∈ XS data sample from the source domain
yS ∈ YS data label from the source domain
xtT ∈ X

t
T data sample from the target domain in time t

Y t
T data label from the target domain in time t
Xt

PT data sample of the pseudolabeled data in time t
Y t
PT pseudolabel of the pseudolabeled data in time t
Xt

LT data sample of the active queries in time t
Y t
LT data label of the active queries in time t
φt feature extractor of the deep learning model in time t
ft classifier of the deep learning model in time t
C number of classes
B query budget

B. Active Pseudolabel

The goal of the gradual active query is to identify the
most informative samples from the target domain. To this
end, we design a novel query algorithm, which pseudolabels
the instances with high confidence and active query from the
unconfident ones with high uncertainty and diversity.
Confidence-based pseudolabeling. Self-training has been
proposed to solve the domain adaptation problem. It first
pseudolabels the target data using the initial model trained with
source data and then retrain the model with such labeled data.
However, a considerable part of instances from the target data
are unconfident with the initial model, if the domain drift is
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Fig. 4: Illustration of the AGST algorithm. The gradual domain drift is shown in the left figure, where the color represents
the domain time index. Our method is presented in the right framework, where the triangle and circle represent data points of
two different classes. In each time t, the adaptor receives unlabeled data and calculates the unconfident interval based on the
initial classifier. It then pseudolabels the confident instances and active queries from unconfident instances by uncertainty and
diversity. Finally, it adapts itself from the initial classifier by confident pseudolabels, active queries, and data features.

severe. Therefore, pseudolabeling unconfident instances would
bring significant label noise, leading to a severe performance
drop. A more wise choice is to pseudolabel only the confident
instances, which is mostly correct, and then leave the rest
data to the active agent to query the most informative ones.
Specifically, we measure the confidence of pseudolable by

ρ(x; f, φ) = max
c
p(Y = c | x; f, φ), (1)

where p(Y = c|x; f, φ) is the soft prediction, i.e. the
softmax layer output of class c, and pseudolabel instances with
ρ(x; f, φ) > α, where α is the thresholding value. We denote
this pseudolabeled data as (Xt

PT , Y
t
PT ). After that, we collect

a set of labeled data with confident pseudolabels.
Uncertainty and diversity active querying. Unsupervised
DA is insufficient to completely bridge a servere domain
drift [18]. Since the gradual domain drift is often severe
when the time is long [16], unsupervised domain adaptation
may perform poorly in the end, leading to the necessary of
additional labels. In this paper, we design a querying strategy
that actively selects the labels based on both uncertainty and
diversity to enhance the label efficiency. The uncertainty is
measured by both entropy and confidence, defined as

S(x; f, φ) = 1− ρ(x; f, φ) +H(x; f, φ), (2)

where the predictive entropy is defined as

H(x; f, φ) = −
C∑
c=1

p(Y = c|x; f, φ) log p(Y = c|x; f, φ).

Such uncertainty is better than solely using confidence or
entropy for multiclass classification, because entropy suffers
low discriminability for highly uncertain and extremely sharp
predictions, and confidence only consider the class with high-
est prediction value while ignoring other information [8]. For
instance, if p(Y |x) = (1/2, 1/2, 0, . . . , 0), the entropy is
log(2), which is tiny as compared with the max value log(C)
if C is large; And if p(Y |x) = (1/2, 1/4, 1/4, 0, . . . , 0), the
confidence is the same as the previous one, which ignore the
rest changes.

In addition, querying labels only based on uncertainty
leads to budget waste since similar instances share similar

uncertainty, leading to the repetition of similar instances. We
further consider the diversity of queried instances based on the
feature space distribution of uncertainty samples. Specifically,
we use uncertainty-weighted KMeans to create B/T clusters
and query labels for nearest neighbors to the cluster centroids.
Recall that B is the whole budget for how many labels the
algorithm can query, then the budget is B/T for each training
round. Since we query the label for each cluster, the number
of clusters equals the number of queries. The intuition behind
this is that the uncertainty-weighted KMeans optimizes the
following objective

min
µ1,...,µB

B∑
k=1

S(x; f, φ)‖φ(x)− µk‖,

where the center µk tends to approach the point with high un-
certainty S(x; f, φ). Since the centroids are naturally diverse,
the nearest neighbors are diverse and uncertain.

C. Gradual Semi-supervised Domain Adaptation

We next introduce our design for gradual semi-supervised
domain adaptation (SSDA) after having the confident pseu-
dolabels and the queried labels.
Active-supervised objective. Our supervised objective loss
consists of two parts: loss of pseudolabeled data, loss of active
queried data, as following

Lt(f, φ) = λPT
∑

(x,y)∈(XPT ,YPT )

lce(ft ◦ φt(x), y)

+ λLT
|XT | − |XPT |
|XLT |

∑
(x,y)∈(XLT ,YLT )

lce(ft ◦ φt(x), y),

where lce denotes the cross-entropy, and λPT , λLT are
scalar weights. We here use different parameter, be-
cause the importance of pseudolabeled instances and active
queried instances are different. In addition, we add weight
(|XT | − |XPT |)/|XLT |, since the active queries represent all
the unlabeled data XT \XPT .
Gradual regularization. Since the batch size may be small
each time, it is too aggressive to “forget” the previous model
and retrain a new one from only limited samples, which could
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lead to large performance decay in the noise setting. We thus
regularize the update of the model by adding the following
regularization

Rft (f) = λR‖f − ft−1‖1, Rφt (φ) = λR‖φ− φt−1‖1,

where λR is the regularization weight. Since the domain is
gradually changing, the domain bias is small between each
consequent time. Within this regularization, the model tends to
find the solution near the previous one, i.e., gradually updating
the model, aligned with the gradual domain drift. We here use
the l1 norm to enforce the model to sparsely update, since
the gradual drift in feature space is often sparse, e.g., in most
of the years, the evaluation of phone focuses its sub-modular
such as screens or frames, leading to the sparse update of the
model.
Minimax entropy. The minimax entropy (MME) [20] is a
typical method to enhance the domain alignment for semi-
supervised domain adaptation. In MME, the classifier ft tends
to maximize the entropy to increase the model discriminability,
and the feature extractor φt tends to minimize the entropy
for increasing the representation ability. MME gives us an
approach to utilize the rest of unlabeled data, i.e. instances
that are not pseudolabeled or active queried, to enhance the
model discriminability and the representation ability.
Gradual SSDA iteration. Based on the previous designs, we
are now ready to propose our Gradual SSDA iteration, as
following

ft = argmin
f
Lt(f, φ) +Rft (f)− λH

∑
x∈Xt

T

H(x; f, φ),

φt = argmin
φ
Lt(f, φ) +Rφt (φ) + λH

∑
x∈Xt

T

H(x; f, φ),

where λH denotes the weight of the entropy. Here we use
an alternative iteration for the classifier ft and the feature
extractor φt by the framework of MME. By gradual SSDA
iteration, the model is trained with unlabeled, active labeled,
and pseudolabeled data. This optimization finds the optimal
solution that has good discriminability and representation
ability with gradual update.

IV. DATASET

Started a new section for dataset introduction here. Added
two subsection titles. To evaluate the model performance
on web applications with gradual domain drift, we use an
automatic approach to construct a new Evolving-Image-Search
(EVIS) dataset. In this section, we introduce the construction
of the new web dataset and analyze its properties.

A. Construction of Evolving-Image-Search (EVIS) Dataset

There are massive image data resources on the Internet.
In different years, the web images are undergoing a gradual
domain shift, e.g., the “mobile phone” related images on the
Internet have undergone drastic and continuous changes in
recent years. Therefore, web images have great potential to be
adopted in gradual domain shift adaptation-related research
work. However, there is currently no existing automatic ap-
proach to construct a web image dataset for gradual domain

shift learning researches. The construction work of the EVIS
dataset could fill this gap to some extent.

EVIS consists of real-world web images that appeared
in Google image search results, with individually recorded
searching keyword labels and uploading times. The collection
process of EVIS is purely done automatically without any
manual selection or annotation.

We select 10 objects with strong changes in this era (5
types of electronic products: mobile phone, laptop, tablet PC,
television, electronic watch. 5 types of vehicles: car, van, truck,
bus, taxi), use their names as keywords to search and collect
on the Google image search engine. In particular, we will
restrict the upload time range of the images in the search
results through the API, and the length of each search interval
is set to one month. For each month, we perform one set of
searches, and each set of searches includes one search for each
of the above keywords. To reduce the overlap and similarity
of results in different searches, we prefix the search keyword
with the word “new”. We also filter out search results that are
too small (less than 200×200 pixels) or too large (greater than
1500×1500 pixels). The time range for the data collection is
from 2009 to 2020, as shown in Figure 5a.

A crawler program is developed by us to automatically
complete the above searching process and download the first
40 downloadable images for each keyword searching result.
The search keywords are recorded as labels each time. All
downloaded images are resized to 256×256 pixels and saved
in JPG format. In this way, the EVIS dataset has a total
of 12×12×10×40 (years, months, categories, downloads per
search) = 57600 pictures, as shown in Table II.

B. Properties of EVIS Dataset

There could be a certain amount of noise in the dataset
purely collected from the search engine, such as unrelated
images that appear in the search results, as shown in Figure 5b.
We deliberately retain this part of the noise to simulate
the noise environment that the model needs to deal with in
real application scenarios and retain our dataset constructing
method’s fully automatic collecting property. We tested the
dataset and found that deep learning model properly trained
on EVIS could reach over 80% accuracy on testset while
only learning limited samples. It’s a decent result for such
a classification task for 10 categories, showing that the EVIS
dataset has the quality of deep model learning research.

Through experiments, we are able to prove the gradual
domain shift characteristics of the data in the EVIS. We first
define the data in EVIS from 2009 to 2011 as source data
and train a source model on it. We select ResNet18 as the
model for the experiment and train it on EVIS data from
2009 to 2011. The training data consists of 7200 images.
(Random selected 20 images per category per month are
used for training. The total amount of training samples is
3(year)×12(month)×10(category)×20 = 7200.) After training
the source model, we test the model on the EVIS data from
2012 to 2020 and evaluate the performance by each year. We
found that the prediction accuracy on the test data shows a
smooth downward trend year by year, as shown in Figure 3.
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(a) Illustration of gradual changes

Mobile Phone Car

Laptop Van

Truck

Tablet PC Bus

Television Taxi

Electronic Watch

Noise Image Examples in EVIS

(b) Illustration of label noise

Fig. 5: Illustration of Evolving Image Search (EVIS) dataset. (a) For each category, the dataset covers the records of the Google
image search results taking the category name as a keyword from 2009 to 2020. The images in the dataset show significant
uniform gradual evolving characteristics with respect to time, i.e., with gradual domain drift property. (b) There is a certain
amount of noisy images inside the EVIS dataset. Possible origins of the noises include irrelevant results generated by search
engines and unusual forms of the searched objects in the images.

The results of this experiment help to show that the data
domain distribution in the EVIS dataset gradually shifts over
time.

Furthermore, we study the degree of evolution over the
last decade for the 10 selected objects. We first again use
the source model trained on data before 2011 to predict data
from 2012 to 2020. Then, for each year, we record the per-
category accuracy. Finally, for each category, we make a linear
regression for the accuracy record from 2012 to 2020, take the
regression slope value as the approximation of the accuracy
decreasing rate (the average amount of accuracy decrease
per year for each specific category). The result is shown in
Figure 6.

TABLE II: Statistic of the web data.

Years Image Size Data Size Categories

12 256×256 57,600 10

V. EXPERIMENT

In this section, we evaluate the performance of the proposed
method.

A. Experiment Setup

1) dataset: We evaluate the proposed method with three
datasets: a synthetic dataset, a real-world dataset, and a new
web dataset collected from a web search engine.
• Rotating MNIST. We randomly select and shuffle 35,000

images from the original MNIST dataset and use the first
2,000 images with no Rotating as the source dataset. The

Fig. 6: Result of the measurement of the degree of evolving
over the last decade for the 10 selected objects. Accuracy de-
creasing rate is the approximated average amount of accuracy
decrease per year for each category (this approximation is
obtained by linear regression). Here we could observe that
the object with the highest degree of evolution is the phone,
followed by tablet computers and laptops, all of which have a
decline rate larger than 0.04. The car also has a relatively high
degree of evolution and is the vehicle whose decline rate is
closest to the above three electronic products. The three least
evolved objects are television, truck, and taxi. Taxi is holding
a minimal decreasing rate which is close to 0.

next 26,000 images are gradually rotated from 0◦ to 90◦

counterclockwise each time to be the target dataset with
gradual domain drift. We set the time interval size by
2,000. Then the angle rotates 90◦/13 each time.

• Portraits. It is a realistic dataset, which contains 37,921
photos of high school seniors labeled by gender across
a century. As shown in previous works [10], [16], since
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the sex ratio and dress-up are evolving with years, this
real dataset suffers from a natural gradual domain shift,
including covariate shift and label shift. We downsample
all the images to 32x32 pixels and do no other preprocess-
ing. We take the first 2000 images as the source domain
to learn the initial model. We use the next 30000 images
as target data with a gradually changing domain.

• EVIS. EVIS is our newly constructed real-world dataset,
consisting of images from web searching results. The
images are annotated with uploading time, uniformly
distributed from the year 2009 to the year 2020. All
the images are downsampled to 64×64 pixels in the
experiment, normalized by overall mean and variance. We
take the images from 2009 to 2011 as the source domain
to train the initial model. The images from 20012 to 2019
are taken as target data with a gradually changing domain.

2) Baselines: As we are the first to study the active gradual
domain adaptation problem, most of the existing domain
adaptation methods are not suitable to compare in such a
setting. We therefore compare with the following baselines
to verify the effectiveness of our design.

• Source model. We compare with the source model, i.e.
the model trained by the source data, to verify the neces-
sity of domain adaptation in the changing environments.

• Unsupervised Gradual Self-Training. We compare with
the unsupervised gradual self-training (UGST) [16], to
verify the effectiveness of the proposed method.

• Direct CLUE. We compare with the direct CLUE, i.e.
directly applying Clustering Uncertainty-weighted Em-
beddings (CLUE) from the source to the target without
gradual domain adaptation on the intermediate domain.

• AGST w/o pseudolabel. We compare with the AGST
w/o pseudolabel, i.e. AGST without pseudolabeling the
confident instances, to verify the design of pseudolabel-
ing.

• AGST w/o active query. We compare with the AGST
w/o active query, i.e. AGST using only random querying,
to verify the design of our uncertainty & diversity-based
active query strategy. This baseline could be regarded as a
semi-supervised method because to random query labels
is equivalent to passively obtaining labels.

• AGST w/o regularization. We compare with the AGST
w/o pseudolabel, i.e., AGST without the regularization
of the distance to the last model, to verify the effective-
ness of regularization in gradual semi-supervised domain
adaptation.

• AGST w/o uncertainty metric. We compare with the
AGST w/o uncertainty metric, i.e., AGST makes the orig-
inal K-Means clustering for sample features in the active
query phase. By comparing AGST with this baseline,
we could verify the design of uncertainty metric and
uncertainty-weighted K-Means in AGST.

• Baseline query by confidence. This baseline method is
the same as AGST except for the active query part. It
queries the least confident k samples at each active query
phase. This baseline is designed to verify the effectiveness
of our representative-diversity-based query strategy.

3) Implementation Detail: Models for each dataset are as
follows.

• For Portraits and Rotating MNIST, we design the same
neural network feature extractor with 3 conv layers.
For each layer, we use a filter size of 5×5, stride of
2×2, 32 output channels, and relu activation. After the
final convolution layer, we add a dropout layer with the
probability of 0.5 and a batchnorm layer after dropout.
The extracted features are then flattened and fed into fully
connected layers with 2 and 10 outputs for Portraits and
Rotating MNIST. Each of the output neurons is matched
with a specific prediction class.

• For EVIS, we adopt the ResNet18 [12] as the back-
bone model for the classification task. Non-pretrained
weights are used for the model initialization. Common
pre-training scenarios, such as ImageNet, have covered
web images after 2012. The model initialized in this way
would be equivalent to having made a certain degree of
adaptation to the target domain in advance, violating our
setting.

Parameter settings for each dataset as following.

• For Rotating MNIST, the batch size is set to be 2000. We
set confidence threshold value α = 0.1,, pseudo-labeled
data loss weight λPT = 1, active queried data loss weight
λLT = 5, regularization weight λR = 0.01, and entropy
weight λH = 0.01. Initial model is trained on source data
for 200 epochs, then take 20 epochs of learning for each
of the batches. The model optimizer used is the Adam
optimizer, with a learning rate of 0.003. 100 active queries
are made for each batch, i.e. B = 100, and the query rate
is 5%.

• For Portraits, the batch size is set to be 500. We set
confidence threshold value α = 0.6,, pseudo-labeled data
loss weight λPT = 1, active queried data loss weight
λLT = 1, regularization weight λR = 0.08, and entropy
weight λH = 0.01. Initial model is trained on source
data for 200 epochs, then takes 20 epochs of learning
for each of the batches. The model optimizer used is the
Adam optimizer, with a learning rate of 0.002. 10 active
queries are made for each batch, i.e., B = 10, and the
query rate is 2%.

• For EVIS, the batch size is set to be 400 (i.e. one batch
for one month). The input images are randomly cropped
by size 60×60 and randomly horizontally flipped by the
probability of 0.5 to achieve data augmentation. We set
confidence threshold value α = 0.5,, pseudo-labeled data
loss weight λPT = 1, active queried data loss weight
λLT = 7.5, regularization weight λR = 0.025, and
entropy weight λH = 0.0025. Initial model is trained on
source data for 60 epochs, then takes 2 epochs of learning
for each batch. The model optimizer used is the Adam
optimizer, with a learning rate of 0.000125 for extractor
and classifier. 40 active queries are made for each batch,
i.e. B = 40, and the query rate is 10%.
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Fig. 7: Classification accuracy v.s. batch of AGST and baselines. (a) The result of the rotating MNIST, which is a synthesis
dataset without environment noise. (b) The result of the portraits, which is a real-world dataset labeled by a human without
environmental noise. (c) The result of the EVIS, which is a real-world dataset automatically collected from the web with
environment noise.

TABLE III: Classification accuracies on the final target domain for AGST and baseline models with 90% confidence intervals
for the mean over 5 runs.

Rotating MNIST Portraits EVIS
Accuracy Labels Accuracy Labels Accuracy Labels

Source Model 13.75±3.20% 0% 59.08±1.32% 0% 52.65±2.18% 0%
UGDA 14.38±3.30% 0% 62.60±1.02% 0% 17.70±3.73% 0%
Direct CLUE 57.03±6.87% 5% 62.12±8.10% 2% 53.25±4.91% 10%
AGST 76.20±2.41% 5% 77.60±1.01% 2% 60.35±3.10% 10%

B. Experiment Results

Our experiment results are illustrated in Figure 7 and
Table III, from which we make the following observations:
AGST works consistently well. AGST works consistently
well on synthetic data is artificially selected and does not suffer
great noise, portrait data that is real-world and artificially
selected without labeling noise, and our EVIS data that is
automatically sampled from web search engine and suffers
significant noise. Specifically, as shown in Table III, AGST
achieves over 60% accuracy increase than UGDA with only
5% active labels and 19% better than direct CLUE in Rotating
MNIST, over 15% in portraits with only 2% labels and 15%
better than direct CLUE in Portraits, around 8% with 10%
labels and 7% better than direct CLUE in EVIS. From the
Figure 7, we observe that AGST also consistently outperforms
other benchmarks during the adaptation process. These results
show the effectiveness of our proposed algorithm.
Direct apply active DA is insufficient. We observe that Direct
CLUE can significantly improve the performance of unsuper-
vised methods, e.g. up to 42% improvement as compared with
UGDA in Rotating MNIST, 3% in Portraits and 35% in EVIS.
However, it is significantly worse than AGST that utilizes
the intermediate data, demonstrating the necessity of gradual
domain adaptation.
Unsupervised model drops with time. As illustrated in
Figure 7, we observe that the accuracy of the source model
keeps decreasing with time, which implies the gradual domain
drift in these datasets. From Figure 7a and Figure 7b, the
unsupervised approach can indeed slightly help the adaptation
in datasets without noise, however, is still aligned with the
decreasing trend, leading to only marginal enhancement on the
final target domain, e.g., 0.6% in Rotating MINIST, 3.6% in

portraits, and no enhancement in EVIS. These results support
our claim that the unsupervised methods can not deal with
gradual domain drift.
Unsupervised method fails with noise. As illustrated in
Figure 7c and Table III EVIS, we observe that the UGST drops
severe and suffers only 17.70% accuracy in the final target
domain, while even the source model has 52.65% accuracy.
Note that we do not show the whole line of UGST, since
the performance of UGST is too low, showing the whole
figure makes the range of the y axis too large to distinguish
the comparison with other baselines. This implies that the
unsupervised approach may harm the result in the noise
setting. In contrast, with the help of active queries, AGST can
maintain a good performance with 10% labels, which verify
the necessity of active querying in the gradually changing
domain.

In summary, the experiment results show that the previous
unsupervised approach fails in dealing with gradual domain
drift, especially in noise setting such as web application envi-
ronments, and the direct active DA method is insufficient to
get a good result. In contrast, our method achieves a significant
performance gain by active gradual domain adaptation.

C. Ablation Study

Our experiment results of the ablation study are illustrated
in Figure 8 and Table IV, from which we make the following
observations:
Pseudolabeling is crucial. As illustrated in Table IV, we
observe that AGST significantly outperforms AGST w/o pseu-
dolabel, which only learns from active queried labels without
the pseudolables. Specifically, the accuracy of AGST w/o
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Fig. 8: Classification accuracy v.s. batch of AGST and baselines for ablation studies on (a) MNIST, (b) Portraits, and (c) EVIS
dataset. Note that we have three key designs on AGST, i.e. active query, pseudolabel learning and gradual regularization. To
verify the efficacy of each component, we compare with five baselines: AGST w/o active query, AGST w/o pseudolabel, AGST
w/o regularization, AGST w/o uncertainty metric, and baseline query by confidence.

TABLE IV: Classification accuracies on the final target domain for AGST and ablation study baseline models with 90%
confidence intervals for the mean over 5 runs.

Rotating MNIST Portraits EVIS
Accuracy Labels Accuracy Labels Accuracy Labels

AGST 76.20±2.41% 5% 77.60±1.01% 2% 60.35±3.10% 10%
AGST w/o pseudolabel 14.00±1.28% 5% 59.08±1.01% 2% 20.12±3.60% 10%
AGST w/o active query 54.99±4.83% 5% 73.44±9.91% 2% 55.15±0.81% 10%
AGST w/o regularization 74.08±4.21% 5% 67.20±6.79% 2% 59.85±0.12% 10%
AGST w/o uncertainty metric 74.46±3.68% 5% 67.80±7.75% 2% 58.55±0.81% 10%
Baseline query by confidence 61.99±4.63% 5% 72.68±5.63% 2% 52.95±2.05% 10%

pseudolabel is only 14% in Rotating MINIST, 59% on Por-
traits, and 20% in EVIS, and has a significant bias with
AGST. As shown in Figure 8, the performance of AGST
w/o pseudolabel drops rapidly over time even with the same
queried labels as AGST, while AGST with pseudolabels
performs consistently well. These results demonstrate that
pseudolabeling the confident instances is crucial to improve
the model generalization ability under gradual domain drift.
The reason is that the pseudolabel augments the labeled data
and helps the gradual semi-supervised domain adaptation.

Active query strategy is efficient. As illustrated in Table IV,
we observe that AGST significantly outperforms AGST w/o
active query, which uses a random query strategy with the
same querying ratio with AGST. Specifically, the accuracy of
AGST w/o active query is 22% worse than AGST on Rotating
MINIST, 4% worse on Portraits, and 5% worse on EVIS. As
shown in Figure 8, the performance of AGST w/o active query
is consistently worse than AGST with active query strategy
during the process. We conduct experiments on different
datasets with different percentages of queried labels, e.g., 2%,
5% and 10%. The experimental results show that our proposals
consistently show advantages. These results show that active
query is effective in the gradual domain adaptation problem.
Moreover, by observing the result in Table IV and Figure 8,
we could find that AGST also consistently outperforms the
baseline query by confidence for all the experiments. These re-
sults demonstrate that our active query strategy, based on both
uncertainty and diversity, is more efficient than the confidence-
based query strategy under gradual domain drift. The reason
is that our active strategy selects the most informative samples

by measuring the uncertainty and diversity, which largely
improves the efficiency of queried samples. Finally, AGST
consistently outperforms AGST w/o uncertainty metric in the
experiments for all three datasets, supporting the effectiveness
of AGST’s uncertainty evaluation metric and uncertainty-
weighted K-Means clustering for the active query.
Gradual regularization helps to improve robustness. As
illustrated in Table IV, we observe that AGST significantly
outperforms AGST w/o regularization, which does not con-
straint the update from the last model by adding a regulariza-
tion. Specifically, the accuracy of AGST w/o regularization is
2% worse than AGST on Rotating MINIST, 10% worse on
Portraits, and 0.5% worse on EVIS, where adding the regular-
ization leads to robust performance. As shown in Figure 8, the
performance of AGST w/o regularization is consistently worse
than AGST with active regularization during the process. The
reason is that the regularization helps to eschew the noise
under a small batch.

In summary of the ablation results, we verify that all
the designs, consisting of pseudolabeling, active query, and
gradual regularization, effectively help the model adapt to
the gradually changing target domains. All the novel designs
contribute to the performance of AGST.

VI. CONCLUSION

In this paper, we study a new but practical problem: the
gradual domain adaptation with limited labels, which chal-
lenges machine learning systems in many real-world scenarios,
especially web applications. To address this, we establish an
effective algorithm – Active Gradual Self-Training (AGST)
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with the key designs of the active pseudolabeling and the
gradual semi-supervised domain adaptation. To verify the
effectiveness of the proposed method, we first create a new
dataset – Evolving-Image-Search (EVIS) collected from the
web search engine without any manual selection. We conduct
the experiments on synthetic, real-world, and EVIS datasets,
and the results show that AGST performs consistently well.
Our ablation study shows that both the active pseudolabeling
and the gradual semi-supervised domain adaptation contribute
to this remarkable performance. Our results take the first step
towards the problem of active gradual domain adaptation, and
we believe that this paper could stimulate future work on the
design of algorithms with stronger adaptation and active query
strategies with better efficiency.
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