

Improving Generalization of Meta-Learning with Inverted Regularization at Inner-Level

Lianzhe Wang¹ · Shiji Zhou¹ · Shanghang Zhang² · Xu Chu¹ · Heng Chang¹ · Wenwu Zhu¹ ¹Tsinghua University · ²Peking University

> Presenter: Lianzhe Wang May 30, 2023 TUE-PM-354

One-Minute Paper Summary

(A Glance at the Poster)

Improving Generalization of Meta-Learning with Inverted Regularization at Inner-Level

Lianzhe Wang¹ · Shiji Zhou¹ · Shanghang Zhang² · Xu Chu¹ · Heng Chang¹ · Wenwu Zhu¹ ¹Tsinghua University · ²Peking University

Background & Motivations

- Meta-learning, with its primary goal of achieving strong performance when adapting to new tasks. necessitates the meta-model to possess a strong generalization ability.
- For representative optimizationbased meta-learning approaches. which formulate the meta-learning problem as a bi-level optimization problem, the generalization challenge unfolds in two dimensions:

Adaptation- __ Ganaralization

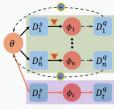
Adaptation-generalization: **Meta-generalization:** the adapted-model should generalize the meta-model should generalize to to the domain of a specific task. requiring performance requiring performance consistency between task consistency between training tasks and new tasks. support data (often few-shot) and true data distribution of corresponding task.

Meta-generalization & Adaptation-generalization.

 Addressing the twofold generalization problem is challenging, particularly given the current absence of dedicated work specifically targeting adaptation-generalization. (illustration Figure adapted from [1].)

unseen tasks

Method

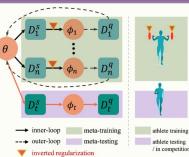


e : ordinary regularization T : inverted regularization -- inner-loop meta-training --+ outer-loop meta-testing : meta-model ϕ : adapted-mode

Our Minimax-Meta Regularization method is designed to improve the generalization of bi-level meta-learning by combining two types of regularizations during training:

- an ordinary regularization at the <u>outer-level</u>, which encourages the meta-model to learn more generalized hypotheses. (for meta-generalization)
- * an inverted regularization V at the inner-level, which intentionally increases the generalization difficulty of the adapted model. This forces the meta-model to learn metaknowledge with better generalization. (for adaptation-generalization)

The Inner-level "Inverted" Regularization



- The inverted regularization wincreases the generalization difficulty, which could typically be achieved by changing the sign of an ordinary regularization term (e.g., negative L1/L2-Norm, inverted entropy regularization, changing the inner-loss from $\hat{\mathcal{L}}(\theta, \mathcal{D}_i^S)$ to $\hat{\mathcal{L}}(\theta, \mathcal{D}_i^S) + \sigma^{in}Inverted_Reg(\theta, \mathcal{D}_i^S)$).
- Intuitionally, at the inner-level, by making the adapted model more difficult to generalize to each training task domain, the meta-model is pushed to learn better-generalized meta-knowledge.
- This can be seen as a form of "adversarial training" or "loaded training" for the meta-model, enhancing its generalization performance.
- Importantly, the inverted regularization/"adversarial training" is only applied during training and not during meta-testing. The meta-model is tested without extra burden after training.

Theoretical Results

- Taking L2-Norm and MAML as the example regularization and meta-learning algorithm, an analysis of inverted regularization at inner-level is conducted.
- Regularization parameter δ here can be either positive or negative to represent the ordinary or inverted regularization. We treat δ as a variable and analyze how its value would influence the generalization and test error bound.
- The result suggests that the inner-level regularization improves generalization and test error bound only when it's inverted.

Experimental Results

Table 1 & 2. Test accuracy of MAML with different types of regularization in the Mini-Imagenet 5-way MAML Few-shot Classification experiment Backbone: 48-48-48 conv.

(L2-Norm as regularization objective only).

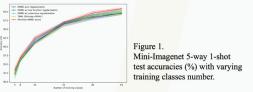
Mini-Imagenet 5-way Few-shot Classification for MAML (Reg Objective: L2-Norm)							
Regularization Type Outer Reg Inner Reg 1-Shot							
no regularization	-	-	49.58±0.45%	65.39±0.50%			
regularize the outer-level	Ordinary	-	49.90±0.54%	66.47±1.21%			
regularize the inner-level	-	Ordinary	49.28±0.37%	64.80±0.25%			
invertedly regularize the inner-level	-	Inverted	49.92±0.42%	66.05±0.68%			
Minimax-Meta Regularization	Ordinary	Inverted	50.25±0.38%	68.17±0.92%			

(L2-Norm & Entropy combined regularization as regularization objective only).

Regularization Type	Outer Reg	Inner Reg	1-Shot	5-Shot
no regularization	-	-	49.58±0.45%	65.39±0.50%
regularize the outer-level	Ordinary	-	50.23±0.67%	67.18±0.88%
regularize the inner-level	-	Ordinary	48.07±1.01%	64.32±0.35%
invertedly regularize the inner-level	-	Inverted	49.96±0.33%	65.91±0.41%
Minimax-Meta Regularization	Ordinary	Inverted	50.85±0.37%	69.36±0.34%

Table 3. Omniglot 20- Table 4. Mini-Imagenet 5-way few-shot way 1-shot experiment. experiment.

Omniglot 20-way 1-Shot Clas	sification	Mini-Imagenet 5-way Few-Sh	ot Classification			
Accuracy		Approach	Backbone	1-Shot Accuracy	5-Shot Accuracy	
Meta-SGD	95.93±0.38%	Meta-SGD	64-64-64	50.47+1.87%	64.03+0.94%	
Prototypical Net	96.00%					
Meta-Networks	97.00%	Prototypical Nets	64-64-64	49.42±0.78%	68.20±0.66%	
GNN	97.40%	GNN	64-96-128-256	50.33±0.36%	66.41±0.63%	
Relation Network	97.60±0.20%	R2-D2	64-64-64	49.50±0.20%	65.40±0.20%	
R2-D2	96.24±0.05%	LR-D2	96-192-384-512	51.90±0.20%	68.70±0.20%	
SNAIL	97.64±0.30%	MetaOptNet	64-64-64	53.23±0.59%	69.51±0.48%	
TAML(Entropy)	95.62±0.50%	TAML(Entropy)	64-64-64-64	51.73±1.88%	66.05±0.85%	
MAML *	94.20±0.41%					
Minimax-MAML(ours)*	95.76±0.39%	MAML-Meta Dropout	32-32-32-32	51.93±0.67%	67.42±0.52%	
MAML++*	97.21±0.51%	MAML-MMCF	32-32-32-32	50.35±1.82%	64.91±0.96%	
Minimax-MAML++(ours)*	97.77±0.06%	MAML *	64-64-64	50.20±1.65%	65.86±0.61%	
		Minimax-MAM(ours)*	64-64-64	51.70±0.42%	68.41±1.28%	
		MAML++*	64-64-64	52.96±0.78%	70.02±0.55%	
		Minimax-MAML++(ours)*	64-64-64-64	53.28+0.35%	71.70±0.23%	



References

[1] Yao, Huaxiu, et al. "Improving Generalization in Meta-learning via Task Augmentation." International Conference on Machine Learning. PMLR, 2021.

Improving Generalization of Meta-Learning with Inverted Regularization at Inner-Level

Lianzhe Wang¹ · Shiji Zhou¹ · Shanghang Zhang² · Xu Chu¹ · Heng Chang¹ · Wenwu Zhu¹ ¹Tsinghua University · ²Peking University

> Presenter: Lianzhe Wang May 30, 2023 TUE-PM-354

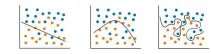
Background: Meta-learning and Generalization

Meta-learning:

- Meta-learning represents <u>a distinct class of</u> <u>machine learning algorithms</u>.
- It aims to enhance the learning ability of agents by learning from past experiences.
- Meta-learning focuses on the <u>performance</u> of models on new/unseen tasks, enabling models to quickly adapt and achieve good performance on new tasks.

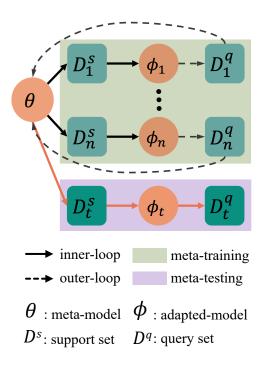
Generalization:

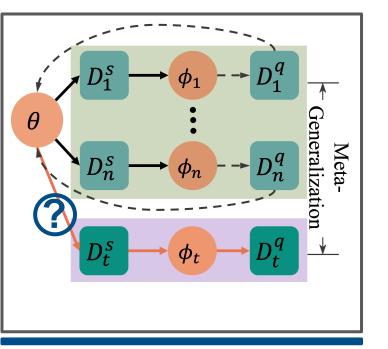
- Generalization ability is a <u>critical</u> <u>characteristic</u> for machine learning algorithms
- It emphasizes the <u>consistent performance</u> of models on <u>new/unseen tasks</u> and training data, beyond their training performance.
- It ultimately refers to the ability of a machine learning model to <u>perform well on unseen</u> or <u>new data</u> after being trained on a limited dataset.



For meta-learning algorithms, it is <u>natural and crucial</u> to consider their generalization ability. (The goal of meta-learning is to equip models with the capability to adapt well to new tasks and consistently perform on new/unseen tasks.)

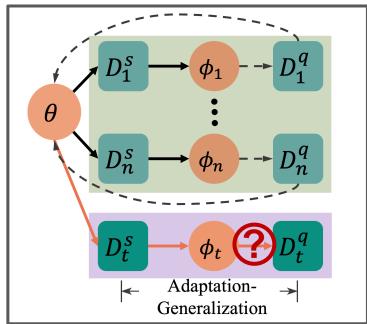
Background: Generalization Challenges of Bi-level Optimization-based Meta-Learning —— <u>Meta-Generalization</u> and <u>Adaptation-Generalization</u>





Meta-Generalization:

the meta-model should generalize to unseen tasks. (requiring performance consistency between training tasks and new tasks.)



Adaptation-Generalization:

the adapted model should generalize to the domain of a specific task.

(requiring performance consistency between task support data and true data distribution of corresponding task.)

illustration Figure adapted from:

Yao, Huaxiu, et al. "Improving Generalization in Meta-learning via Task Augmentation." International Conference on Machine Learning. PMLR, 2021.

Limitations of Existing Methods

- Focus on Meta-Generalization / Overlook Adaptation-Generalization

Methods addressing Meta-Generalization:

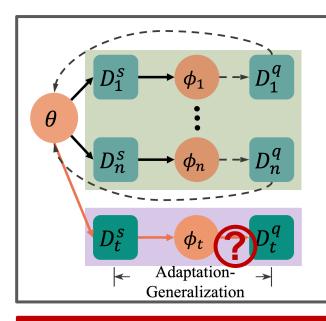
- Meta-Regularization.
- Meta-Augmentation.
- Task-Augmentation.
- Meta-Dropout.

...

- Meta-Memorization Analysis.
- Bayesian Methods.
- θ $D_{1}^{s} \rightarrow \phi_{1} \rightarrow D_{1}^{q}$ $Generalization \rightarrow D_{n}^{q}$ $D_{n}^{s} \rightarrow \phi_{n} \rightarrow D_{n}^{q}$ $D_{t}^{s} \rightarrow \phi_{t} \rightarrow D_{t}^{q}$

Meta-Generalization:

the meta-model must generalize to unseen tasks.



Adaptation-Generalization:

the adapted model must generalize to the domain of a specific task.

Methods addressing Adapatation-Generalizaton:

? (underexploring)

Limitations of Existing Methods

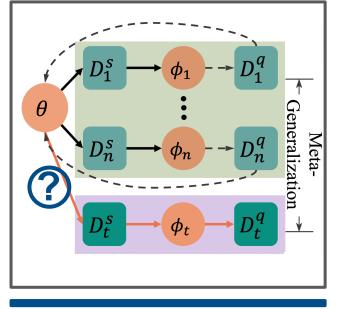
- Focus on Meta-Generalization / Overlook Adaptation-Generalization

Methods addressing Meta-Generalization:

- Meta-Regularization.
- Meta-Augmentation.
- Task-Augmentation.
- Meta-Dropout.
- Meta-Memorization Analysis.
- Bayesian Methods.

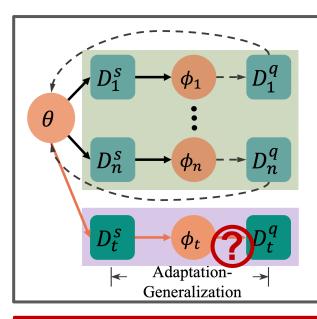
...

 Minimax-Meta Regularization (ours)



Meta-Generalization:

the meta-model must generalize to unseen tasks.



Adaptation-Generalization:

the adapted model must generalize to the domain of a specific task.

Methods addressing Adaptation-Generalization:

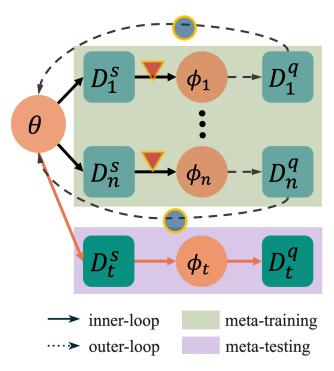
Minimax-Meta Regularization (ours)

Method: Bi-level Minimax-Meta Regularization for Meta-learning

– a Reg-framework Considering **both** Meta-Generalization and Adaptation-Generalization

Minimax-Meta Regularization method is designed to improve the generalization performance of bi-level meta-learning by combining two types of regularizations <u>during training</u>:

- an ordinary regularization at the <u>outer-level</u> to encourage the meta-model to learn more generalized hypotheses (for meta-generalization).
- *an **inverted regularization** V at the <u>inner-level</u> to increase the generalization difficulty of adapted model, thus help the meta-model improve generalization during training (for adaptation-generalization).



- ordinary regularization, can be any classic regularization term, such as L1/L2-Norm or information entropy regularization, which encourages the metamodel to <u>learn more conservative / generalized hypotheses</u>.
- inverted regularization, on the contrast, should be adopting an inverted regularization term, which could typically be achieved by <u>changing the sign of an ordinary regularization term (e.g., negative L1/L2-Norm, inverted entropy regularization), and this increases the adaptation difficulty and forces the meta-model to learn better-generalized hypotheses.</u>

(note that inverted regularization is not adopted during testing phase.)

Method: Bi-level Minimax-Meta Regularization for Meta-learning —— a Reg-framework Considering both <u>Meta-Generalization</u> and <u>Adaptation-Generalization</u>

Example Usage — Application to Model-Agnostic Meta-learning (MAML) Algorithm:

(Minimax-Meta Regularization is easy for implementation, oftentimes only involve modifications to inner- and outerloss functions.)

inverted regularization at the <u>inner-level</u> :

Algorithm 1 Minimax-MAML

- **Require:** Datasets $S = \{S_i^{\text{in}}, S_i^{\text{out}}\}_{i=1}^m$; total number of iterations T; regularization coefficients σ^{in} and σ^{out} .
- 1: Initialize the meta-model w^0
- 2: for t = 0 to T 1 do
- Randomly sample r tasks with indices stored in \mathcal{B}_t ; 3:
- for each sampled task \mathcal{T}_i do 4:
- Sample a support data batch $\mathcal{D}_i^{t, \text{ in }}$ from $\mathcal{S}_i^{ ext{in }}$; 5:
- Sample a query data batch $\mathcal{D}_{i}^{t, \text{ out}}$ from $\mathcal{S}_{i}^{\text{out}}$; 6:
- (Inner-level) Compute per-task adapted param-7: eters with gradient descent:

$$w'_{i}^{t} := w^{t} - \alpha \nabla_{w^{t}} \left(\hat{\mathcal{L}} \left(w^{t}, \mathcal{D}_{i}^{t, \text{ in }} \right) + \sigma^{in} Inverted_Reg \left(w^{t}, \mathcal{D}_{i}^{t, \text{ in }} \right) \right);$$

(Outer-level) SGD step for meta-model, save 8: per-task meta-weight for meta-update:

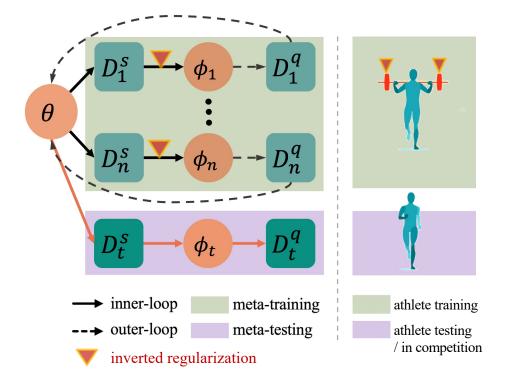
$$w_{i}^{t+1} := w^{t} - \beta_{t} \nabla_{w^{t}} \left(\hat{\mathcal{L}} \left(w'_{i}^{t}, \mathcal{D}_{i}^{t, \text{ out}} \right) + \sigma^{out} Ordinary_Reg \left(w'_{i}^{t}, \mathcal{D}_{i}^{t, \text{ out}} \right) \right);$$

end for 9: Meta-update $w^{t+1} := \frac{1}{r} \sum_{i \in \mathcal{B}_t} w_i^{t+1}$ 10: 11: end for 12: **Return:** w^T

Method: Inner-level Inverted Regularization for Adaptation-Generalization

Inverted Regularization at Inner-level

 In Minimax-Meta Regularization, the inverted regularization is applied at the inner-level of meta-learning.



Intuition for Improving Adaptation-Generalization with Inverted Regularization at Inner-level

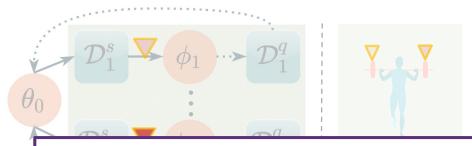
- The intuition behind using inverted regularization at the inner-level is to improve the meta-model's generalization by increasing adaptation difficulty during training.
- The inverted regularization term vencourages the <u>adapted</u> model to learn more <u>challenging</u> and <u>less generalizable</u> hypotheses.
- By making the <u>adapted model more difficult to fit the meta-</u> <u>support set</u>, the <u>meta-model is pushed to learn better-</u> <u>generalized meta-knowledge</u>.
- This can be seen as a form of <u>"adversarial training</u>" or <u>"loaded training</u>" for the meta-model, enhancing its generalization performance.
- (Importantly, the "adversarial training" is only applied during training and not during meta-testing, allowing the meta-model to perform well in new environments <u>without carrying the training burden</u>)

illustration of intuition for inverted regularization at inner-level: the "loaded training" athlete.

Method: Inner-level Inverted Regularization for Adaptation-Generalization

Inverted Regularization at Inner-level

 In Minimax-Meta Regularization, the inverted regularization is applied at the inner-level of meta-learning.



However, the concept of using inverted regularization at the inner-level to improve generalization may seem either <u>too intuitional</u> or <u>counterintuitive</u> to some, it's crucial that we provide a <u>theoretical analysis</u> in the next section to support its utility.

Intuition for Improving Adaptation-Generalization with Inverted Regularization at Inner-level

- The intuition behind using inverted regularization at the inner-level is to improve the meta-model's generalization by increasing adaptation difficulty during training.
- The inverted regularization term vencourages the <u>adapted</u> model to learn more <u>challenging</u> and <u>less generalizable</u> hypotheses.
- By making the <u>adapted model more difficult to fit the meta-</u> <u>support set</u>, the <u>meta-model is pushed to learn better-</u> <u>generalized meta-knowledge.</u>
- This can be seen as a form of <u>"adversarial training</u>" or <u>"loaded training</u>" for the meta-model, enhancing its generalization performance.
- (Importantly, the "adversarial training" is only applied during training and not during meta-testing, allowing the meta-model to perform well in new environments <u>without carrying the training burden</u>)

Theoretical Analysis: Inner-level Inverted Regularization Improves Generalization —— Preliminary

We provide an analysis of the effectiveness of inverted regularization in meta-learning by taking L2-Norm regularization at the inner-level of the **single-step MAML** algorithm as a typical example, which is very possible to generalize to other regularization.

The effectiveness would be proved by deriving generalization bound while inner-level regularization is adopted. The derivation is mainly based on a convex analysis approach, and the results are given under the strongly-convex loss assumptions.

Assumptions:

Assumption 1. We assume the function $\ell(\cdot, z)$ satisfies the following properties for any $z \in \mathcal{Z}$:

- 1. (Strong convexity) $\ell(\cdot, z)$ is μ -strongly convex, i.e., $(\nabla \ell(w, z) \nabla \ell(u, z))^T (w u) \ge \mu ||w u||^2$;
- 2. (Lipschitz in function value) $\ell(\cdot, z)$ has gradients with norm bounded by G, i.e., $\|\nabla \ell(w, z)\| \leq G$;
- 3. (Lipschitz gradient) $\ell(\cdot, z)$ is L-smooth, i.e., $\|\nabla \ell(w, z) \nabla \ell(u, z)\| \le L \|w u\|$; 4. (Lipschitz Hessian) $\ell(\cdot, z)$ has ρ -Lipschitz Hessian, i.e., $\|\nabla^2 \ell(w, z) \nabla^2 \ell(u, z)\| \le \rho \|w u\|$

MAML with inner-level L2-Norm regularization.

The updating rule of MAML get changed from

$$w_i^{t+1} := w^t - \beta_t \nabla_{w^t} \hat{\mathcal{L}} \left(w^t - \alpha \nabla \hat{\mathcal{L}} \left(w^t, \mathcal{D}_i^{t, \text{ in }} \right), \mathcal{D}_i^{t, \text{ out }} \right)$$

to

$$w_i^{t+1} := w^t - \beta_t \nabla_{w^t} \hat{\mathcal{L}} \left(w^t - \alpha \nabla_{w^t} (\hat{\mathcal{L}} \left(w^t, \mathcal{D}_i^{t, \text{ in }} \right) + \frac{\delta}{2} \|w^t\|^2) \right), \mathcal{D}_i^{t, \text{ out }} \right)$$

where δ is the regularization parameter. Here δ can be either positive or negative to represent the ordinary or inverted regularization, respectively. We treat δ as a variable and analyze how its value would influence the generalization error.

Theoretical Analysis: Inner-level Inverted Regularization Improves Generalization — <u>Generalization Error</u> and <u>Training Bias</u> with Regularization

Without Regularization, the Decomposition of Test Error

$$\mathbb{E}_{\mathcal{A},\mathcal{S}}\left[F(\mathcal{A}(\mathcal{S})) - \min_{\mathcal{W}}F\right] \quad \text{(test error)} = \\ \underbrace{\mathbb{E}_{\mathcal{A},\mathcal{S}}\left[\hat{F}(\mathcal{A}(\mathcal{S}),\mathcal{S}) - \min_{\mathcal{W}}\hat{F}(\cdot,\mathcal{S})\right]}_{\text{training error}} + \underbrace{\mathbb{E}_{\mathcal{A},\mathcal{S}}\left[F(\mathcal{A}(\mathcal{S})) - \hat{F}(\mathcal{A}(\mathcal{S}),\mathcal{S})\right]}_{\text{generalization error}} + \underbrace{\mathbb{E}_{\mathcal{S}}\left[\min_{\mathcal{W}}\hat{F}(\cdot,\mathcal{S})\right] - \min_{\mathcal{W}}F}_{\leq 0} \quad (1)$$

With Regularization, the Decomposition of Test Error:

The process of adding regularization often involves changes to the loss function during training.

In other words, if the model is obtained by a new regularized algorithm \tilde{A} , it is usually optimized for a different function $\tilde{F}(\cdot)$ instead of the original $F(\cdot)$. As a result, we need to consider the **Training Bias** caused by this change of learning objective. Instead of directly adopting (1)'s decomposition, we need to further decompose the test error as in (2).

Theoretical Analysis: Inner-level Inverted Regularization Improves Generalization —— results and properties for **Generalization Error Bound**

Algorithm Stability Based Approach for Deriving the Generalization Error Bound.

Key Lemma: If a meta-learning algorithm is (γ, K) -stable, the generalization error is then bounded by γ . (Intuitively, the term "(γ , K)-stable" refers to a property where the error difference between two models trained on datasets with only K different samples is limited to γ , indicating that the models' performance is relatively stable even with limited data variability.)

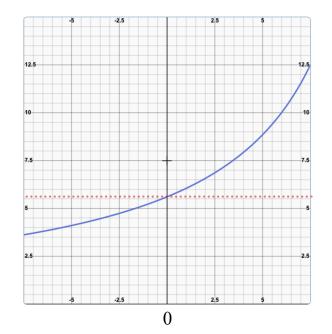
Generalization Error Bound, Result:

$$\frac{\mathbb{E}_{\tilde{\mathcal{A}},\mathcal{S}}[F(\tilde{\mathcal{A}}(\mathcal{S})) - \hat{F}(\tilde{\mathcal{A}}(\mathcal{S}),\mathcal{S})] \leq}{\frac{2G^2(1+\alpha L)(1-\alpha\mu-\alpha\delta+(2+\alpha L-\alpha\delta)\alpha LK)}{mn}}(\frac{1}{\alpha\rho G + (1-\alpha\delta-\alpha\mu)^2 L} + \frac{1}{-\alpha\rho G + (1-\alpha\delta-\alpha L)^2\mu})$$

Properties with δ :

The generalization bound could be regarded as a function $GB(\delta)$, and <u>its derivative</u> $GB'(\delta)$ <u>is always positive</u> within the defined domain $\delta \in \left(-\infty, \frac{1}{2\alpha}\right)$.

It suggests that $GB(\delta)$ is monotonically increasing, implying that L2 regularization at the inner-level decreases the generalization bound of MAML only when it's inverted (i.e. $\delta < 0$). And ordinary regularization at the inner-level would increase the generalization bound.



Theoretical Analysis: Inner-level Inverted Regularization Improves Generalization ——results and properties for **Training Bias Bound**

Key Technique: We establish an equivalence relationship for training bias, enabling us to transform the analysis involving differences in optimal values between two functions into an analysis involving only a single function.

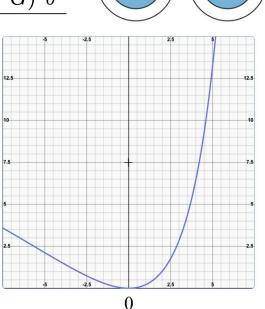
Training Bias Bound Result:

$$\mathbb{E}_{\mathcal{S}}\left[\hat{F}(\underset{\mathcal{W}}{\operatorname{arg\,min}}\hat{\tilde{F}}(\cdot,\mathcal{S}),\mathcal{S}) - \underset{\mathcal{W}}{\min}\,\hat{F}(\cdot,\mathcal{S})\right] \leq \frac{\alpha^2(\alpha\rho G + (1-\alpha\mu)^2 L)((1-\alpha\mu-\alpha\delta)L\|w^*\| + G)^2\delta^2}{2(-\alpha\rho G + (1-\alpha L - \alpha\delta)^2\mu)^2}$$

Properties with δ :

The training bias bound could also be regarded as a function $TB(\delta)$.

- We could observe that $TB(\delta) > TB(0) = 0$ for $\delta \neq 0$, which suggests that <u>training bias is inevitable</u> when regularization is adopted.
- Another important finding is that for any legal choice of $\delta_0 > 0$, we have $\underline{TB}(-\delta_0) < \underline{TB}(\delta_0)$, which suggests that the inverted regularization has less corruption to training bias bound at the inner-level than the ordinary regularization with the same coefficient magnitude.



Low Bias

Theoretical Analysis: Inner-level Inverted Regularization Improves Generalization —— Finally, the **Total Test Error** Bound.

Based on the previous analysis, we could obtain the **Total Test Error** bound by combining the **Generalization Error Bound** and **Training Bias Bound**.

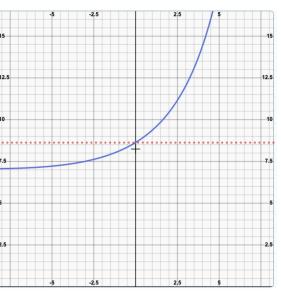
Test Error Bound Result:

Properties with δ :

The test error bound could be described by $TE(\delta) \coloneqq TB(\delta) + GB(\delta)$.

- When δ is positive, we have $TB(\delta) > TB(0)$ and $GB(\delta) > GB(0)$, which suggests ordinary regularization at the inner-level worsens the model's test error bound.
- Instead, for inverted regularization, since TE'(0) = TB'(0) + GB'(0) = 0 + GB'(0) > 0, there must be an interval $[\delta^*, 0)$ in which all values can be used as the inverted regularization parameter to decrease the test error bound.

These results are validated in the experiment section.



0

Bi-level Minimax-Meta Regularization: Applications and Experiments —— Few-shot Classification

Based on the preceding findings, we have observed that the <u>bi-level Minimax-Meta Regularization</u>, which combines <u>inverted regularization at the inner level</u> and <u>ordinary regularization at the outer level</u>, is a method that may exhibit improvements in both <u>Adaptation-Generalization</u> and <u>Meta-Generalization</u>.

In this section, we empirically validate this approach, starting with the classic **few-shot classification task**.

Experiment Settings:

Datasets

- Mini-ImageNet Dataset:
 - Derived from ImageNet, it consists of 600 instances from 100 classes.
 - We split the Mini-ImageNet dataset into 64 classes for training, 12 classes for validation, and 24 classes for testing.
- Omniglot Dataset:
 - Contains 1623 character classes with different alphabets.
 - Each class has 20 instances.
 - Divided into training, validation, and test sets, with 1150, 50, and 423 instances, respectively.

Methods

- Minimax-MAML with Norm Regularization
- Minimax-MAML with Norm & Entropy Combined Regularization
- Minimax + Other MAML variants.
 (e.g., MAML++, MR-MAML)

First Experiment: **Empirical Verification** for the Theoretical Results —— Few-shot Classification, Mini-ImageNet Dataset

The first experiment is for empirically verifying the insights & theoretical results that <u>inner-</u> and <u>outer-level</u> regularizations should be respectively be <u>inverted</u> and <u>ordinary</u> to improve generalization performance.

Note that our bi-level Minimax-Meta Regularization is a framework that is compatible with regularizations beyond L2-Norm. \downarrow

Mini-Imagenet 5-way Few-shot Classification for MAML (Reg Objective: L2-Norm)			Mini-Imagenet 5-way Few-Shot Classification for MAML (Reg Objective: L2-Norm & Entropy						
Regularization Type	Outer Reg	Inner Reg	1-Shot	5-Shot	Regularization Type Outer Reg		Inner Reg	1-Shot	5-Shot
no regularization	-	-	49.58±0.45%	65.39±0.50%	no regularization	-	-	49.58±0.45%	65.39±0.50%
regularize the outer-level	Ordinary	-	49.90±0.54%	66.47±1.21%	regularize the outer-level	Ordinary	-	50.23±0.67%	67.18±0.88%
regularize the inner-level	-	Ordinary	49.28±0.37%	64.80±0.25%	regularize the inner-level	-	Ordinary	48.07±1.01%	64.32±0.35%
invertedly regularize the inner-level	-	Inverted	49.92±0.42%	66.05±0.68%	invertedly regularize the inner-level	-	Inverted	49.96±0.33%	65.91±0.41%
Minimax-Meta Regularization	Ordinary	Inverted	50.25±0.38%	68.17±0.92%	Minimax-Meta Regularization	Ordinary	Inverted	50.85±0.37%	69.36±0.34 %

Observations:

Inner-level inverted regularization enhances the generalization performance.

Inner-level ordinary regularization impairs the generalization performance.

Outer-level ordinary regularization enhances the generalization performance.

The outer-level ordinary regularization and inner-level inverted regularization are compatible.

Inner-level inverted regularization and the outer-level ordinary regularization are suitable for combined regularizer

Few-Shot Classification: Comparing with Representative Approaches

Omniglot 20-way 1-shot experiment

Omniglot 20-way 1-Shot Classification						
Approach	Accuracy					
Meta-SGD(Li et al., 2017)	95.93±0.38%					
Prototypical Net(Snell et al., 2017)	96.00%					
Meta-Networks(Munkhdalai et al., 2017)	97.00%					
GNN(Garcia et al., 2018)	97.40%					
Relation Network(Sung et al., 2018)	97.60±0.20%					
R2-D2(Bertinetto et al., 2019)	96.24±0.05%					
SNAIL(Mishra et al., 2018)	97.64±0.30%					
TAML(Entropy)(Jamal et al., 2019)	95.62±0.50%					
MAML(Finn et al., 2017)*	94.20±0.41%					
Minimax-MAML(ours)*	95.76±0.39%					
MAML++(Antoniou et al., 2018)*	97.21±0.51%					
Minimax-MAML++(ours)*	97.77±0.06%					

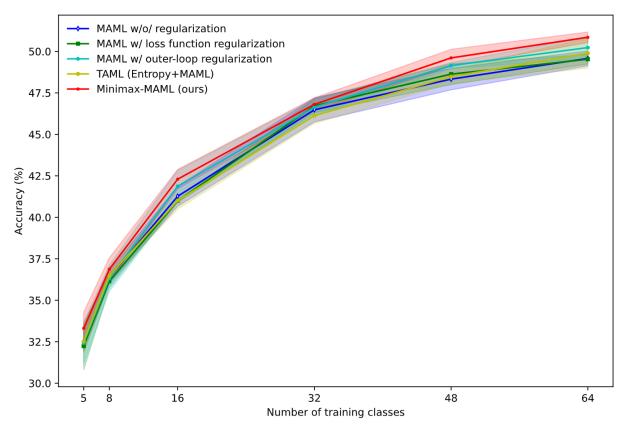
Mini-ImageNet 5-way few-shot experiment

Mini-Imagenet 5-way Few-Shot Classification							
Approach	Backbone	1-Shot Accuracy	5-Shot Accuracy				
Meta-SGD(Li et al., 2017)	64-64-64-64	50.47±1.87%	64.03±0.94%				
Prototypical Nets(Snell et al., 2017)	64-64-64-64	49.42±0.78%	68.20±0.66%				
LLAMA(Grant et al., 2018)	64-64-64-64	49.40±1.83%	-				
Meta-Networks(Munkhdalai et al., 2017)	64-64-64-64	49.21±0.96%	-				
GNN(Garcia et al., 2018)	64-96-128-256	50.33±0.36%	66.41±0.63%				
Relation Network(Sung et al., 2018)	64-96-128-256	50.44±0.82%	65.32±0.70%				
R2-D2(Bertinetto et al., 2019)	64-64-64-64	49.50±0.20%	65.40±0.20%				
LR-D2(Bertinetto et al., 2019)	96-192-384-512	51.90±0.20%	68.70±0.20%				
MetaOptNet(Lee et al., 2019)	64-64-64-64	53.23±0.59%	69.51±0.48%				
TAML(Entropy)(Jamal et al., 2019)	64-64-64-64	51.73±1.88%	66.05±0.85%				
MAML-Meta Dropout(Lee et al., 2020)	32-32-32-32	51.93±0.67%	67.42±0.52%				
MAML-MMCF(Yao et al., 2021)	32-32-32-32	50.35±1.82%	64.91±0.96%				
MAML(Finn et al., 2017)*	64-64-64-64	50.20±1.65%	65.86±0.61%				
Minimax-MAM(ours)*	64-64-64-64	51.70±0.42%	68.41±1.28%				
MAML++(Antoniou et al., 2018)*	64-64-64-64	52.96±0.78%	70.02±0.55%				
Minimax-MAML++(ours)*	64-64-64-64	53.28±0.35%	71.70±0.23%				

Few-Shot Classification with Limited Tasks

Experiment Setup

- To further illustrate the generalization ability, we conducted a few-shot classification experiment with a limited number of training tasks.
- For a dataset with M training classes available, there would be accordingly $\binom{M}{N}$ training tasks available. So we could restrict the number of training tasks by restricting the number of training classes.
- We restricted the number of training classes to 48/32/16/8/5 to examine the effect of limited tasks.
- Compared methods: Meta-Minimax regularization, original MAML, MAML with outer-loop regularization, MAML with loss function regularization, and TAML (Entropy+MAML).
- Results and Analysis
 - Meta-Minimax regularization <u>consistently outperforms</u> <u>other methods</u> under the limited task number scenario.
 - Even with a very small number of tasks, Meta-Minimax regularization significantly improves accuracy compared to other methods.



Test accuracies (%) with varying training classes number. The shaded region denotes the 95% confidence interval.

Meta-Dataset Experiment with Larger Backbones

- Experiment Motivation
 - Test the applicability of our method to <u>first-order methods</u> and evaluate its performance on <u>larger backbones</u> and <u>more</u> <u>complex datasets</u>.
- Experiment Setup
 - Meta-Dataset is a <u>dataset of datasets</u> benchmark for metalearning.
 - We conduct this experiment using first-order MAML (fo-MAML) and ResNet-12 backbone on Meta-Dataset.
 - Experiment settings: <u>Only training on ILSVRC training set</u>, testing on ILSVRC testing set and 8 additional datasets.
 - Minimax-Meta Regularization was implemented for fo-MAML and compared with the original baseline version.

- Results and Analysis
 - Minimax-fo-MAML <u>outperforms</u> the baseline method <u>on all 9 testing datasets</u>.
 - The results indicate that Minimax-Meta Regularization improves generalization for firstorder methods with larger backbones.

Method	ILSVRC (test)	Omniglot	Aircraft	Birds	Textures	QuickDraw	VGG Flower	Traffic	MSCOCO
fo-MAML	38.24±2.30	44.75±6.26	28.06±2.43	37.64±3.56	39.41±4.50	42.57±3.79	58.55±5.20	36.62±2.85	42.38±5.09
Minimax-fo- MAML(ours)	40.53±1.54	68.43±3.53	30.95±2.97	41.09±0.40	45.12±1.41	51.57±2.68	66.23±0.89	38.83±2.71	45.15±0.85

(Datasets except ILSVRC are only used for testing)

Conclusion

- In this paper, we have analyzed the challenges of <u>meta-learning's generalization</u>, including both meta-generalization and adaptation-generalization.
- We have proposed <u>Minimax-Meta Regularization</u>, a novel bi-level regularizationbased approach that enhances both <u>meta-generalization</u> and <u>adaptation-generalization</u>.
- <u>Theoretical analysis and extensive experiments</u> have demonstrated the effectiveness of Minimax-Meta Regularization in improving the generalization performance of various meta-learning algorithms.
- Our work provides a new perspective on meta-learning's generalization and have the potential to contribute to the development of robust and effective metalearning algorithms for real-world applications.

Thank you!

Lianzhe May 30, 2023